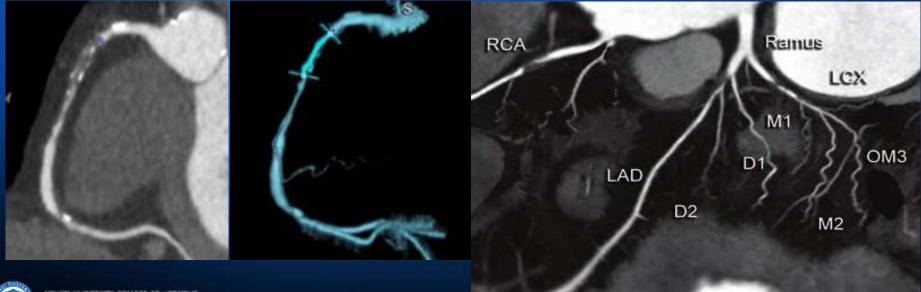


Use of Coronary CT Angiography to Facilitate PCI of CTOs; Insights from *CT-CTO trial*

Byeong-Keuk Kim, MD, PhD

Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine


Nothing to disclose

YONSEI UNIVERSITY COLLEGE OF MEDICINE EVERANCE CARDIOVASCULAR HOSPITAL

How to improve success rate of CTO?

- For the improvement of the success rate of CTO-PCI, many attempts have been made.
- Of these, <u>coronary computed tomography angiography (CCTA)</u> provides valuable information before PCI for CTO.
 - → Essential for making a primary and secondary procedural plan with assessment of the risk and benefit of the procedure.

ONSEI UNIVERSITY COLLEGE OF MEDICINE VERANCE CARDIOVASCULAR HOSPITAL JACC: CARDIDVASCULAR INADING # 2015 87 146 ARERICAN COLLEGE DF CARDIDLOGT FOUNDATION FURLINED BY FLIFFURN INC. VOL. 4. HU. 7. 2018 ISSN 1915-0744/515.00 INTELLING AND AND/10 (STAT) LING 2016 DS 201

CT Angiography for Revascularization of CTO

Crossing the Borders of Diagnosis and Treatment

Maksymilian P. Opolski, MD,* Stephan Achenhach, MD)

Potential role of <u>pre-</u> procedural CCTA related with CTO success

3) predicting the procedural outcome of CTO-PCI;
4) pre-procedural planning;

→ Facilitate CTO=PC

YONSEI UNIVERSITY COLLEGE OF MEDICINE EVERANCE CARDIOVASCULAR HOSPITAL

Opolski, M.P. et al. J Am Coll Cardiol Img. 2015; 8(7):846-58.

Int J Cardiovasc Imaging (2013) 29:1819-1827 DOI 10.1007/s10554-013-0258-y

a) Curved and straightened MPR b) 3D volume-rendering image

ORIGINAL PAPER

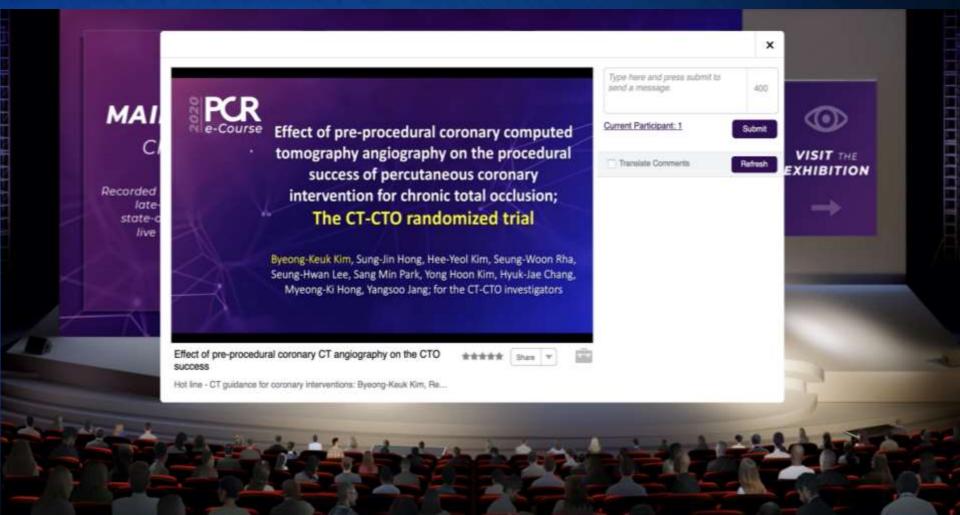
Preprocedural coronary CT angiography significantly improves success rates of PCI for chronic total occlusion

Andreas Rolf · Gerald S. Werner · Annika Schuhbäck · Johannes Rixe · Helge Möllmann · Holger M. Nef · Constantin Gundermann · Christoph Liebetrau · Gabriele A. Krombach · Christian W. Hamm · Stephan Achenbach

Compare the success rate between the pre-CT group and control

- Pre-CT group (n=30) vs. Control without CT scan (n=43) The intervention success rate in pre-CT group was higher than in conventional group.
 - Matched : 90% (27/30) vs. 63% (27/43), p=0.009
 - Unmatched : 88% (22/25) vs. 64 (16/25), p=0.003

However, the results were from non-randomized study.


CT-guided CTO intervention, really improve the success of CTO-PCI?

- Until now, there has been a strong belief but no definite evidence !!!
- No randomized data exist whether CCTA before PCI for CTO improves the success rate.

ONSEI UNIVERSITY COLLEGE OF MEDICINE VERANCE CARDIOVASCULAR HOSPITAL

CT-CTO randomized trial

PI of the CT-CTO trial: Yangsoo Jang

INSELUNIVERSITY COLLEGE OF MEDICINE

Byeong-Keuk Kim

Methods (1)

<u>CT-CTO trial</u> (ClinicalTrials.gov Identifier: NCT02037698), an investigator-initiated, multicenter, randomized trial conducted at 12 centers in South Korea.

Inclusion Criteria	Exclusion Criteria
of occlusion at least 3 months)	 Cardiogenic shock or EF <25% ISR CTO or graft occlusion lesion Significant left main stenosis AMI within 48 hours
	• • • • • • • •

Eligible patients for CT scan and CAG

Retry of same CTO within 2 weeks

Primary endpoint: Rate of the successful recanalization

defined as a final <u>TIMI flow grade ≥ 2 </u> and $\leq 30\%$ residual stenosis on the final CAG without death or fatal complications during the procedure requiring emergent operation.

 ✓ Procedure success - a final TIMI flow grade ≥2 without death or fatal complication
 ✓ Device success - residual stenosis ≤30% after successful stent implantation

YONSEI UNIVERSITY COLLEGE OF MEDICINE EVERANCE CARDIOVASCULAR HOSPITAL

Byeong-Keuk Kim

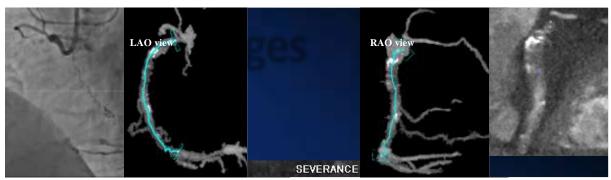
Methods (2)

Sample size calculation:

Assumption, "The success rate of the CCTA guidance would be superior to the angiography guidance"

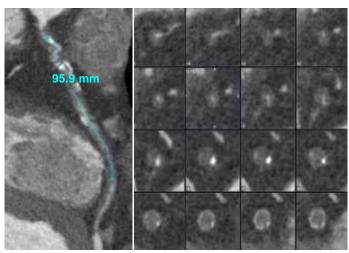
→ A total of 200 patients in each arm with a superiority comparison for the primary endpoint (Power 80%, type 1 error 5%, and drop-out rate 5%).

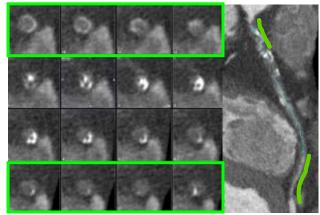
Study Flow of the CT-CTO trial



CCTA image analyses in the CCTA-guided group

1. Making two orthogonal CT images matching with angiogram


- **CTO courses** (how CTO course goes & what the hidden route is within CTO segment)
- Anatomical location associated with side branches

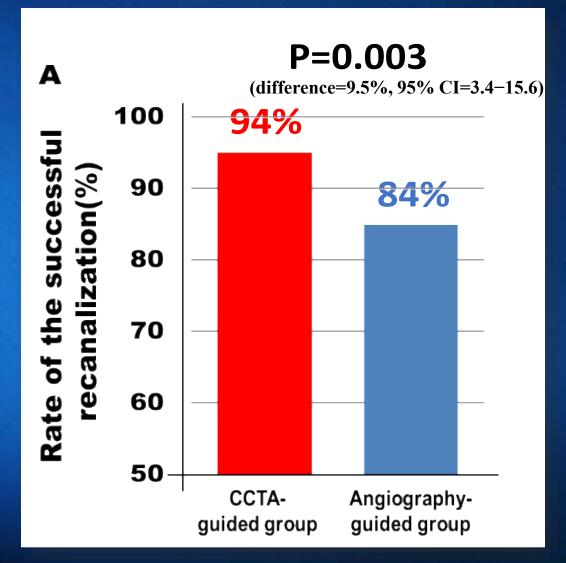


- 2. Qualitative and quantitative analyses of CTO from MPR images
 - 1) CTO length and the shapes of proximal and distal CTO ends
 - 2) Calcification; longitudinal & cross-sectional analyses
 - Maximal cross-sectional extent; <50% or $\ge50\%$
 - Length of calcification with cross-sectional extent >50% segment
 - Calcification shape; semicircular <180°, circular ≥180°, or 360° (full moon)
 - Location of calcium on CTO lesion
 - → "Geographic calcification-mapping"

3. Analyses of the segments around CTO

• Check the size of vessel and lumen and the tortuosity in proximal and distal reference segments

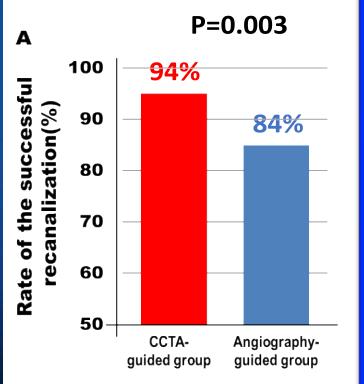
Baseline characteristics

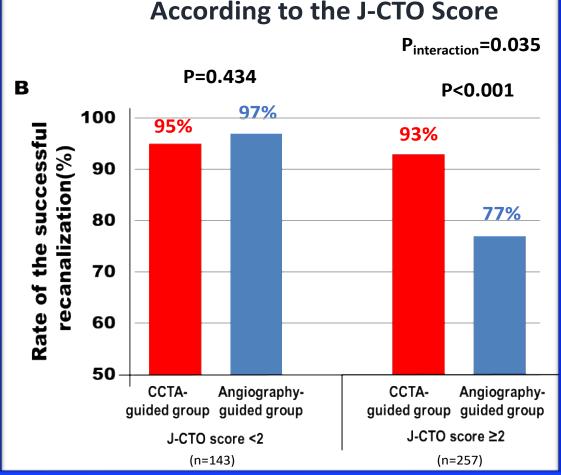

Baseline clinical and angiographic characteristics*	CCTA-guided (n=200)	Angiography-guided (n=200)
Age (years)	62 ± 10	61 ± 11
Men	160 (80%)	166 (83%)
Body mass index (kg/m ²)	25.2 ± 3.4	25.3 ± 3.4
Diabetes mellitus	79 (40%)	80 (40%)
Chronic kidney disease	6 (3%)	9 (5%)
Left ventricular EF (%)	59 ± 10	57 ± 10
Target vessel, LAD	88 (44%)	84 (42%)
J-CTO score	1.70 ± 1.02	1.68 ± 0.88
Reattempt of failed CTO-PCI	28 (14%)	35 (18%)
CTO length (mm)	24.3 ± 12.6	25.3 ± 12.9
Total lesion length (mm)	44.9 ± 21.8	44.7 ± 22.4
Reference vessel diameter (mm)	2.77 ± 0.55	2.68 ± 0.44
Femoral artery for vascular access	173 (86%)	176 (88%)
Contralateral angiogram	135 (68%)	128 (64%)
Retrograde approach	45 (23%)	43 (22%)
Use of IVUS	118 (59)	105 (53)

*There were no significant differences between the study groups.

IONSEI UNIVERSITY COLLEGE OF MEDICINE EVERANCE CARDIOVASCULAR HOSPITAL

Primary Endpoint: Rate of the successful recanalization




YONSEI UNIVERSITY COLLEGE OF MEDICINE EVERANCE CARDIOVASCULAR HOSPITAL

Success rates according to the J-CTO score

Primary Endpoint: Rate of the successful recanalization

For overall patients

YONSEI UNIVERSITY COLLEGE OF MEDICINE EVERANCE CARDIOVASCULAR HOSPITAL

Procedural Outcomes - 1

Immediate procedural outcomes	CCTA-guided (N=200)	Angiography-guided (N=200)	P
Device success	189 (95)	168 (85)	0.001
Procedure success	187 (94)	168 (84)	0.003
Successful recanalization – Primary Endpoint	187 (94)	168 (84)	0.003
Total number of stents	1.74 ± 0.76	1.76 ± 0.79	0.770
Total length of stents (mm)	53.9 ± 26.1	56.0 ± 27.0	0.455
Mean stent diameter (mm)	3.08 ± 0.34	2.95 ± 0.30	0.004
Type of drug-eluting stent			0.393
Everolimus-eluting stent	89 (47)	82 (48)	
Zotarolimus-eluting stent	94 (50)	86 (51)	

Procedural Outcomes - 2

Immediate procedural outcomes	CCTA-guided (N=200)	Angiography-guided (N=200)	Р
Device success	189 (95)	168 (85)	0.001
Procedure success	187 (94)	168 (84)	0.003
Successful recanalization – Primary Endpoint	187 (94)	168 (84)	0.003
Total number of stents	1.74 ± 0.76	1.76 ± 0.79	0.770
Total length of stents (mm)	53.9 ± 26.1	56.0 ± 27.0	0.455
Mean stent diameter (mm)	3.08 ± 0.34	2.95 ± 0.30	0.004
Type of drug-eluting stent			0.393
Everolimus-eluting stent	89 (47)	82 (48)	
Zotarolimus-eluting stent	94 (50)	86 (51)	
Total procedure time (min)	93 ± 52	94 ± 57	0.943
Fluoroscopic time (min)	46 ± 32	44 ± 29	0.537
Contrast used (ml)	284 ± 115	301 ± 117	0.145
Coronary perforation ≥ type II	2 (1)	8 (4)	0.055
Emergent pericardiocentesis or surgery	0	0	>0.999
Post-procedural peak creatine kinase-MB, ng/mL	4.6 ± 7.2	6.8 ± 31	0.342
PPMI (CK-MB ≥10× the UNL), n (%)	0	4 (2)	0.123

Kim BK, presented 2020 PCR late-breaking, e-course

Pre-specified subgroup analyses for the primary endpoint

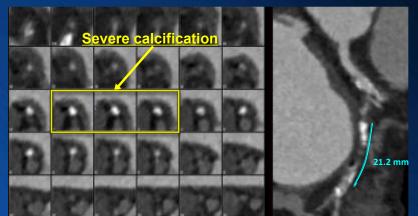
Favors Favors	
	alue for eraction
to 15.6)	
C	0.197
3 to 12.4)	
3 to 21.9)	
(0.933
1 to 16.9)	
D to 19.5)	
	0.093
7 to 21.9)	
5 to 13.3)	
	0.877
3 to 20.1)	
i to 16.8)	
	0.417
i to 17.8)	
to 17.9)	
	0.035
.1 to 3.9)	
5 to 24.5)	
	0.316
6 to 25.5)	
2 to 14.9)	
	0.349
8 to 23.7)	
3 to 15.0)	
	0.555
4 to 35.2)	
7 to 11.2)	
	0.719
9 to 20.9)	
4 to 11.9)	
I → ● 1	
9 to 22 0)	0.999
ç	1-0-1

Absolute difference in success rate

The effects of CCTA guidance on CTO success was more **prominently observed in the difficult CTO (J-CTO ≥2)**!

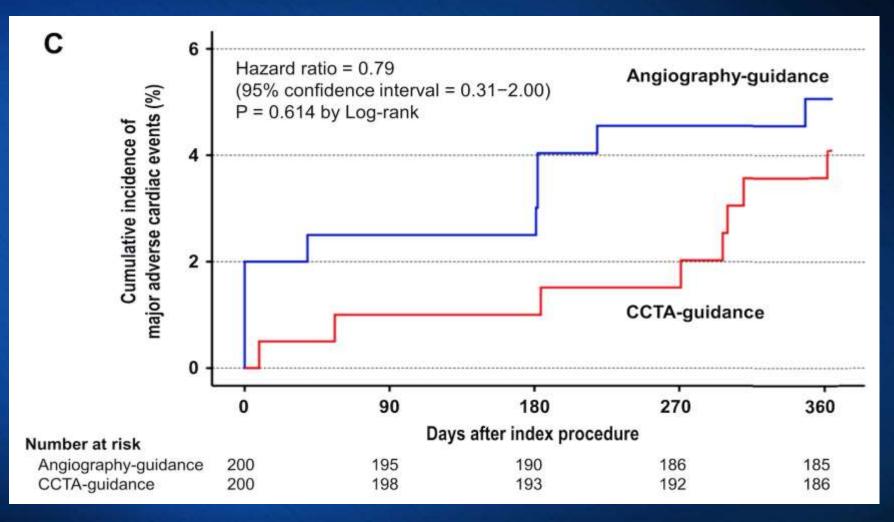
 Blunt stump or long tortuous CTO;

Pre-procedural CCTA could show the exact anatomical location related with the adjacent side branches and the courses from proximal to distal CTO cap.


Reasons for CTO-failure in the CT-CTO	CCTA-guidance	Angiography-guidance	Р
Number of failed antegrade-only approach, n	10	17	
Failure to enter the cap due to anatomical ambiguity	0 (0%)	6 (35%)	0.033

The effects of CCTA guidance on CTO success was more **prominently observed in the difficult CTO (J-CTO ≥2)**!

 \circ CTO with severe calcification;


CCTA visualizing the CTO course and plaque characteristics (calcification geometry) could be helpful for navigating and selection of the proper antegrade and retrograde wires and devices without increasing the risks of procedural complication.

Reattempted CTO-PCI after previously failure;

CTO success could be improved by adopting the strategy for reattempt based on the various information from the longitudinal and cross-sectional results of CCTA analyses.

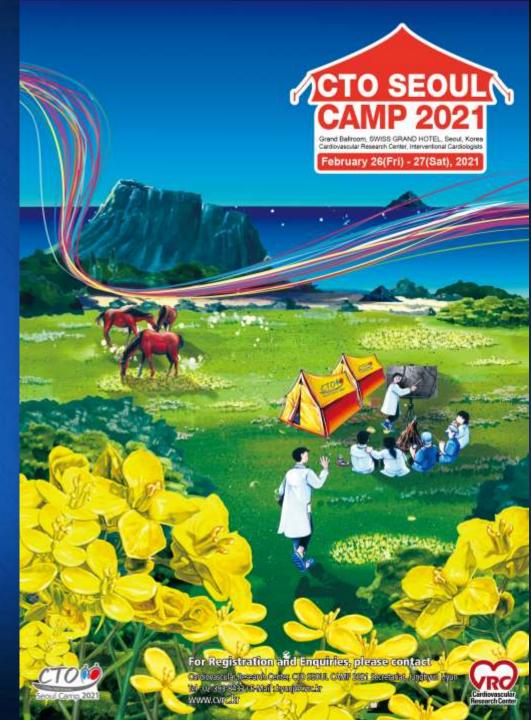
Clinical outcomes

Major adverse cardiac event occurrence; a composite of cardiac death, target-vessel related MI, or ischemia-driven TVR at 12 months.

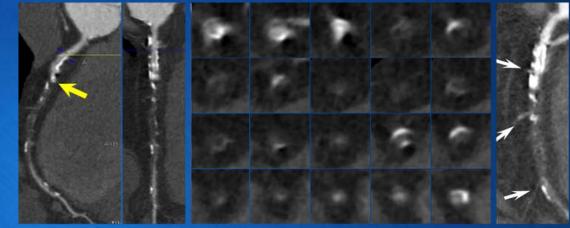
CONCLUSION

Although there have been various beneficial roles of the CCTA before CTO-PCI, it has not been established whether the CCTA before CTO could guide CTO-PCI and finally improve the success rate.

- In this randomized CT-CTO trial, we firstly demonstrated that CCTAguided CTO-PCI based on the pre-procedural CT planning resulted in a higher rate of successful recanalization for CTO-PCI with a lower trend of complications (esp. coronary perforation) during CTO procedures.
- Moreover, the effect of pre-procedural CCTA was prominently observed in CTO-PCI patients with high angiographic scores that predicted difficulty in procedural success.



Thank you for your attention!



IONSEI UNIVERSITY COLLEGE OF MEDICINE

2. Post-processed images including thin-slab maximum intensity projection and multiplanar reconstruction (the start points of the stumpless CTO [yellow arrow], major side branches related with CTO segment [white arrows], and distribution of calcification)

3. (CTO length (mm)	46.2 mm
4. 3	Shape of proximal CTO end	Blunt
	Shape of distal CTO end	Sharp
5. (Calcification analyses	
A	A. Proximal segment	
	Cross-sectional calcification arc (none / <180º / ≥180º)	<180°
	Presence of the cross-sections with maximal calcification extent >50%	No
	Length of calcification with maximal calcification extent >50% (mm)	3 mm
E	3. CTO body	
	 Cross-sectional calcification arc (none / <180º / ≥180º) 	<180°
-	Presence of the cross-sections with maximal calcification extent >50%	No
	Length of calcification with maximal calcification extent >50% (mm)	
C	. Distal segment	
	 Cross-sectional calcification arc (none / <180º / ≥180º) 	
	Presence of the cross-sections with maximal calcification extent >50%	
AI DICINE		
ISCULA	R HOSPITAL	

